【UVA-10652】解题报告(计算几何,凸包模板)

原始题目

Board Wrapping

题目大意

  • 给出平面直角坐标系n个长方形模具的中心点,长宽以及顺时针旋转角度,求一个能包含所有模具的最小多边形,并计算模具的面积占多边形面积的百分比。

解题思路

  • 把长方形都看成四个点,则为凸包问题,求凸包面积以及长方形面积计算百分比即可。

解题代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//计算几何模板,二维几何基础
//使用印用注意避免直接在程序中调用构造函数构造无名对象。否则可能会导致程序出错
#include <bits/stdc++.h>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <set>
#include <iomanip>
#include <algorithm>
#include <queue>
#include <map>
#include <string>
#define INF 0x3f3f3f3f
#define rep(i,a,n) for(int i=a;i<n;i++)
#define per(i,a,n) for(int i=n-1;i>=a;i--)
using namespace std;
typedef long long ll;
const double eps =1e-10;
const int maxn=2500; //注意修改
int n;
//有的命名为sgn函数,高精度符号判断
int dcmp(double x){
//相等函数判断,减少精度问题
if(fabs(x)<eps) return 0;
else return x<0?-1:1;
}

//点的定义
class Point{
public:
double x,y;
Point (double x=0,double y=0):x(x),y(y){} //构造函数,方便代码的编写
}point[maxn],pafter[maxn];

typedef Point Vector;// 从程序实现上,Vector只是Point的别名

//运算符重载
Vector operator + (const Vector &A,const Vector &B) { return Vector(A.x+B.x,A.y+B.y); } //向量+向量=向量,点+向量=点
Vector operator - (const Vector &A,const Vector &B) { return Vector(A.x-B.x,A.y-B.y); } //向量-向量=向量,点-向量-点
Vector operator * (const Vector &A,double p) { return Vector(A.x*p,A.y*p); } //向量*数=向量 (数乘)
Vector operator / (const Vector &A,double p) { return Vector(A.x/p,A.y/p); } //向量/数=向量 (数除)
double operator * (const Vector &A,const Vector &B) { return A.x*B.x+A.y*B.y; } //向量(点乘)向量=数 (点乘)
bool operator < (const Point &A,const Point &B) { return A.x==B.x?A.y<B.y:A.x<B.x; } //按x值递增排序
bool operator == (const Point &A,const Point &B) { return dcmp(A.x-B.x)==0&& dcmp(A.y-B.y)==0; } //判定两个点是否相同,用到dcmp精度判定

//点乘叉乘
double dot(const Vector &A,const Vector &B){ return A.x*B.x+A.y*B.y; } //向量(叉乘)向量=向量 (叉乘)
double operator ^ (const Vector &A,const Vector &B){ return A.x*B.y-A.y*B.x; }
double cross(const Vector &A,const Vector &B){ return A.x*B.y-A.y*B.x; }

//模长面积
double abs(const Vector &A){ return sqrt(dot(A,A));} //计算向量模长
double area2(const Point &A,const Point &B,const Point &C){ return cross(B-A,C-A) ;} //计算平行四边形方向面积
double PolygonArea(Point *p,int n) { double area=0; rep(i,1,n-1){area+=cross(p[i]-p[0],p[i+1]-p[0]);}return area/2.0; } //计算多边形的有向面积

//旋转
Vector rotate(Vector A,double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));} //旋转rad弧度
Vector normal(Vector A){double l=abs(A);return Vector(-A.y/l,A.x/l);} //计算单位法线,左转90
double torad(double deg) { return deg/180*acos(-1); } //角度转弧度

//线段定义
class Line {
public:
Point s,e;
Line(){}
Line(Point _s,Point _e){
s=_s;e=_e;
}

}line[maxn];
//判断两线段是否相交
bool inter(Line l1,Line l2){
// cout<<"L1 "<<l1.e.x<<","<<l1.e.y<<" "<<l1.s.x<<","<<l1.s.y<<endl;
// cout<<"L2 "<<l2.e.x<<","<<l2.e.y<<" "<<l2.s.x<<","<<l2.s.y<<endl;
return (
//根据题目要求端点相交是否算作相交来决定大于等于和小于等于
//排斥实验
max(l1.s.x,l1.e.x)>=min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x)>=min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y)>=min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y)>=min(l1.s.y,l1.e.y) &&
//跨立实验
dcmp((l2.s-l1.s)^(l1.s-l1.e))*dcmp((l2.e-l1.s)^(l1.s-l1.e))<0 &&
dcmp((l1.s-l2.s)^(l2.s-l2.e))*dcmp((l1.e-l2.s)^(l2.s-l2.e))<0
) ;
}
bool inter(Point a1,Point a2,Point b1,Point b2){
Line l1(a1,a2),l2(b1,b2);
return inter(l1,l2);
}
bool cmp(Point a,Point b){
if(a.x==b.x) return a.y<b.y;
else return a.x<b.x;
}

//求两直线交点
Point getinter(Line l1,Line l2){Vector v=l1.s-l1.e;Vector w=l2.s-l2.e;Vector u=l1.e-l2.e;double t=cross(w,u)/cross(v,w);return l1.e+v*t;}
Point getinter(Point a1,Point a2,Point b1,Point b2){Line l1(a1,a2);Line l2(b1,b2);return getinter(l1,l2);}


//判定点和线段的关系,
//0:不在线段所在直线上
//1:在线段内(不含端点)
//2:在线段端点
//3:在线段两侧的射线上
int online(Point a,Line l){
if(dcmp(cross(l.s-a,l.e-a))!=0) return 0;
double pans=dcmp(dot(l.s-a,l.e-a));
// cout<<(l.s-a).x<<","<<(l.s-a).y<<" "<<(l.e-a).x<<","<<(l.e-a).y<<endl;
if(pans<0) return 1;
else if(pans==0) return 2;
else if(pans>0) return 3;
}
int online(Point a,Point b1,Point b2){
Line l(b1,b2);
return online(a,l);
}

//凸包
int ConvexHull(Point *p,int n,Point *ch)
{
sort(p,p+n,cmp);
int m=0;
for(int i=0;i<n;i++){
while(m>1 && cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-2;i>=0;i--){
while(m>k && cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0) m--;
ch[m++]=p[i];
}
if(n>1) m--;
return m;
}





int main(){
int t;
ios::sync_with_stdio(false);
cin>>t;
while(t--){
int n,pc=0;
double area1=0;
cin>>n;
rep(i,0,n){
double x,y,w,h,j,ang;
cin>>x>>y>>w>>h>>j;
Point o(x,y); //原始点

ang=-torad(j);

point[pc++]=o+rotate(Vector(w/2,h/2),ang);
point[pc++]=o+rotate(Vector(-w/2,h/2),ang);
point[pc++]=o+rotate(Vector(w/2,-h/2),ang);
point[pc++]=o+rotate(Vector(-w/2,-h/2),ang);
area1+= w*h;

}
// for(int i=0;i<pc;i++) cout<<point[i].x<<","<<point[i].y<<endl;
int len=ConvexHull(point,pc,pafter);

double area2 = PolygonArea(pafter,len);
// cout<<"len="<<len<<" area1="<<area1<<" area2="<<area2<<endl;
cout<<fixed<<setprecision(1)<<area1*100/area2<<" %"<<endl;
}

}

收获与反思

  • 凸包模板