【HDU-6222】解题报告(大数,打表)

原始题目

Heron and His Triangle

  • Time Limit: 2000/1000 MS (Java/Others)
  • Memory Limit: 262144/262144 K (Java/Others)
  • Total Submission(s): 2123
  • Accepted Submission(s): 892

Problem Description

A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integers $ t-1, t, t+1 $ and that its area is an integer. Now, for given n you need to find a Heron’s triangle associated with the smallest \(t\) bigger than or equal to \(n\).

Input

The input contains multiple test cases. The first line of a multiple input is an integer \(T (1 ≤ T ≤ 30000)\) followedby T lines. Each line contains an integer $N (1 ≤ N ≤ {10}^{30}) $.

Output

For each test case, output the smallest \(t\) in a line. If the Heron’s triangle required does not exist, output \(-1\).

Sample Input

4
1
2
3
4

Sample Output

4
4
4
4

Source

2017ACM/ICPC亚洲区沈阳站-重现赛(感谢东北大学)

Recommend

jiangzijing2015

题目大意

输入\(n\),求大于等于\(n\)的最小\(t\)满足由\(t-1,t,t+1\)构成的三角形面积为整数。

解题思路

打表发现\(t\)构成数列 \[t[i]=4 \times t[i-1] -t[i-2] \]

大数板子打表输出。

标程证明还没有想,待补充。

解题代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#include <bits/stdc++.h>
#define rep(i,a,n) for(int i=a;i<n;++i)
#define per(i,a,n) for(int i=n-1;i>=a;--i)
#define fi first
#define se second
using namespace std;
// base and base_digits must be consistent
constexpr int base = 1000000000;
constexpr int base_digits = 9;
struct bigint{
vector<int> z;
int sign;
bigint() : sign(1) {}
bigint(long long v) { *this = v; }
bigint& operator=(long long v)
{
sign = v < 0 ? -1 : 1;
v*=sign;
z.clear();
for(; v > 0; v = v / base) z.push_back((int)(v % base));
return *this;
}

bigint(const string& s) { read(s); }

bigint& operator+=(const bigint& other)
{
if (sign == other.sign)
{
for (int i = 0, carry = 0; i < other.z.size() || carry; ++i)
{
if(i==z.size()) z.push_back(0);
z[i] += carry + (i < other.z.size() ? other.z[i] : 0);
carry = z[i] >= base;
if(carry) z[i] -= base;
}
}
else if (other != 0 /* prevent infinite loop */)
{
*this -= -other;
}
return *this;
}

friend bigint operator+(bigint a, const bigint& b)
{
return a += b;
}

bigint& operator-=(const bigint& other)
{
if (sign == other.sign)
{
if (sign == 1 && *this >= other || sign == -1 && *this <= other)
{
for (int i = 0, carry = 0; i < other.z.size() || carry; ++i)
{
z[i] -= carry + (i < other.z.size() ? other.z[i] : 0);
carry = z[i] < 0;
if(carry) z[i] += base;
}
trim();
}
else
{
*this = other - *this;
this->sign = -this->sign;
}
}
else *this += -other;
return *this;
}

friend bigint operator - (bigint a,const bigint& b)
{
return a -= b;
}

bigint& operator*=(int v)
{
if(v<0) sign=-sign,v=-v;
for(int i=0,carry=0;i<z.size() || carry;++i)
{
if(i==z.size()) z.push_back(0);
long long cur = (long long)z[i] * v + carry;
carry = (int)(cur / base);
z[i] = (int)(cur % base);
}
trim();
return *this;
}

bigint operator*(int v) const
{
return bigint(*this) *= v;
}

friend pair<bigint, bigint> divmod(const bigint& a1, const bigint& b1)
{
int norm = base / (b1.z.back() + 1);
bigint a = a1.abs() * norm;
bigint b = b1.abs() * norm;
bigint q, r;
q.z.resize(a.z.size());

for (int i = (int)a.z.size() - 1; i >= 0; i--)
{
r*=base; r+=a.z[i];
int s1 = b.z.size() < r.z.size() ? r.z[b.z.size()] : 0;
int s2 = b.z.size() - 1 < r.z.size() ? r.z[b.z.size() - 1] : 0;
int d = (int)(((long long)s1 * base + s2) / b.z.back());
r -= b * d;
while(r < 0) r+=b,--d;
q.z[i] = d;
}

q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return {q, r / norm};
}

friend bigint sqrt(const bigint& a1)
{
bigint a=a1;
while(a.z.empty()||a.z.size()%2==1) a.z.push_back(0);

int n = a.z.size();
int firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
int norm = base / (firstDigit + 1);
a *= norm;
a *= norm;
while(a.z.empty()||a.z.size()%2==1) a.z.push_back(0);

bigint r = (long long)a.z[n - 1] * base + a.z[n - 2];
firstDigit = (int)::sqrt((double)a.z[n - 1] * base + a.z[n - 2]);
int q = firstDigit;
bigint res;
for (int j = n / 2 - 1; j >= 0; j--)
{
for(;;--q)
{
bigint r1=(r-(res*2*base+q)*q)*base*base+(j>0?(long long)a.z[2*j-1]*base+a.z[2*j-2]:0);
if(r1>=0) { r=r1; break; }
}
res*=base;res+=q;
if(j>0)
{
int d1 = res.z.size() + 2 < r.z.size() ? r.z[res.z.size() + 2] : 0;
int d2 = res.z.size() + 1 < r.z.size() ? r.z[res.z.size() + 1] : 0;
int d3 = res.z.size() < r.z.size() ? r.z[res.z.size()]:0;
q = (int)(((long long)d1*base*base+(long long)d2*base+d3)/(firstDigit*2));
}
}

res.trim();
return res / norm;
}

bigint operator/(const bigint& v) const
{
return divmod(*this, v).first;
}

bigint operator%(const bigint& v) const
{
return divmod(*this, v).second;
}

bigint& operator/=(int v)
{
if(v<0) sign=-sign,v=-v;
for (int i = (int)z.size() - 1, rem = 0; i >= 0; --i)
{
long long cur = z[i] + rem * (long long)base;
z[i] = (int)(cur / v);
rem = (int)(cur % v);
}
trim();
return *this;
}

bigint operator/(int v) const
{
return bigint(*this) /= v;
}

int operator%(int v) const
{
if(v<0) v=-v;
int m=0;
for(int i=(int)z.size()-1;i>=0;--i) m=(int)((z[i]+m*(long long)base)%v);
return m * sign;
}

bigint& operator*=(const bigint& v)
{
*this = *this * v;
return *this;
}

bigint& operator/=(const bigint& v)
{
*this = *this / v;
return *this;
}

bool operator<(const bigint& v) const
{
if(sign!=v.sign) return sign < v.sign;
if(z.size()!=v.z.size()) return z.size()*sign<v.z.size()*v.sign;
for(int i = (int)z.size() - 1; i >= 0; i--)
if(z[i] != v.z[i]) return z[i] * sign < v.z[i] * sign;
return false;
}

bool operator>(const bigint& v) const { return v < *this; }
bool operator<=(const bigint& v) const { return !(v < *this); }
bool operator>=(const bigint& v) const { return !(*this < v); }
bool operator==(const bigint& v) const { return !(*this < v) && !(v < *this); }
bool operator!=(const bigint& v) const { return *this < v || v < *this; }

void trim()
{
while(!z.empty() && z.back() == 0) z.pop_back();
if(z.empty()) sign = 1;
}

bool isZero() const { return z.empty(); }

friend bigint operator-(bigint v)
{
if(!v.z.empty()) v.sign = -v.sign;
return v;
}

bigint abs() const
{
return sign == 1 ? *this : -*this;
}

long long longValue() const
{
long long res = 0;
for(int i = (int)z.size() - 1; i >= 0; i--) res = res * base + z[i];
return res * sign;
}

friend bigint gcd(const bigint& a, const bigint& b)
{
return b.isZero() ? a : gcd(b, a % b);
}

friend bigint lcm(const bigint& a, const bigint& b)
{
return a / gcd(a, b) * b;
}

void read(const string& s)
{
sign = 1;
z.clear();
int pos = 0;
while(pos < s.size() && (s[pos] == '-' || s[pos] == '+'))
{
if(s[pos] == '-') sign = -sign;
++pos;
}
for(int i=(int)s.size()-1;i>=pos;i-=base_digits)
{
int x=0;
for(int j=max(pos,i-base_digits+1);j<=i;j++) x=x*10+s[j]-'0';
z.push_back(x);
}
trim();
}

friend istream& operator>>(istream& stream, bigint& v)
{
string s;
stream >> s;
v.read(s);
return stream;
}

friend ostream& operator<<(ostream& stream, const bigint& v)
{
if(v.sign == -1) stream << '-';
stream << (v.z.empty() ? 0 : v.z.back());
for(int i = (int)v.z.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.z[i];
return stream;
}

static vector<int> convert_base(const vector<int>& a, int old_digits, int new_digits)
{
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for(int i=1;i<p.size();i++) p[i]=p[i-1]*10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for(int v : a)
{
cur += v * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits)
{
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int)cur);
while(!res.empty() && res.back()==0)
res.pop_back();
return res;
}

typedef vector<long long> vll;
static vll karatsubaMultiply(const vll& a, const vll& b)
{
int n=a.size();
vll res(n + n);
if(n <= 32)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}

int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for(int i=0;i<k;i++) a2[i]+=a1[i];
for(int i=0;i<k;i++) b2[i]+=b1[i];

vll r = karatsubaMultiply(a2, b2);
for(int i=0;i<a1b1.size();i++) r[i]-=a1b1[i];
for(int i=0;i<a2b2.size();i++) r[i]-=a2b2[i];
for(int i=0;i<r.size();i++) res[i+k]+=r[i];
for(int i=0;i<a1b1.size();i++) res[i]+=a1b1[i];
for(int i = 0;i<a2b2.size();i++) res[i+n]+=a2b2[i];
return res;
}

bigint operator*(const bigint& v) const
{
vector<int> a6=convert_base(this->z,base_digits,6);
vector<int> b6=convert_base(v.z,base_digits,6);
vll a(a6.begin(),a6.end());
vll b(b6.begin(),b6.end());
while(a.size()<b.size()) a.push_back(0);
while(b.size()<a.size()) b.push_back(0);
while(a.size()&(a.size()-1)) a.push_back(0),b.push_back(0);
vll c=karatsubaMultiply(a, b);
bigint res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < c.size(); i++)
{
long long cur = c[i] + carry;
res.z.push_back((int)(cur % 1000000));
carry = (int)(cur / 1000000);
}
res.z = convert_base(res.z, 6, base_digits);
res.trim();
return res;
}
};

bigint qpow(bigint a,bigint b){
bigint ans=1;
while(b!=0){
if(b%2){
ans= ans*a;
}
b/=2;
a= a*a;
}
return ans;

}


struct Matrix
{
bigint a[2][2];
Matrix()
{
rep(i,0,2){
rep(j,0,2){
a[i][j]=0;
}
}
}
Matrix operator * (const Matrix y)
{
Matrix ans;
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
for(int k = 0; k < 2; k++)
ans.a[i][j] = ans.a[i][j] + (a[i][k]*y.a[k][j]);
return ans;
}
Matrix operator = (const Matrix y)
{
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
a[i][j]=y.a[i][j];
}
Matrix operator *= (const Matrix y)
{
Matrix ans;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
ans.a[i][j] = ans.a[i][j] + (a[i][k]*y.a[k][j]);

for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
a[i][j]=ans.a[i][j];
}
};

Matrix qpow(bigint x)
{
Matrix ans;
ans.a[0][0]=ans.a[1][1]=1; //单位矩阵
Matrix mul;
mul.a[0][0]=4;
mul.a[0][1]=-1;
mul.a[1][0]=1;
mul.a[1][1]=0;
while(x!=0)
{
if(x%2!=0)
ans = ans*mul;
mul = mul* mul;
x/=2;
}
return ans;
}
bigint ans[1005];
void solve(){


ans[0]=(bigint)4;
ans[1]=(bigint)14;
ans[2]=(bigint)52;
rep(i,2,200){
ans[i]=(bigint)4*ans[i-1]-ans[i-2];
// cout<<ans[i]<<endl;
}

}
int main()
{
solve();
int t;cin>>t;
while(t--){
bigint n;
cin>>n;
rep(i,0,200){
if(ans[i]>=n){
cout<<ans[i]<<endl;
break;
}
}


}
}

收获与反思

证明待补充